Lycée Mahmoud Magdiche Sfax

<u>Devoir de Contrôle N°1</u> <u>Sciences physiques</u>

4S.Exp_{1,2,3&4}

Prols: M^R Khemakhem, Ben Amira & M^{me} Marrakchi

Jeudi 01-11-2018

Durée: 2 heures

- On donnera l'expression littérale avant de passer à l'application numérique.
- L'utilisation de la calculatrice non programmable est autorisée.
- Numéroter les questions.

CHIMIE (9 points)

Exercice N°1: (4,5 points)

On dispose de deux béchers on introduit dans le 1^{er} un volume $V_1 = 25mL$ d'une solution (S_1) d'iodure de potassium de concentration molaire C_1 et dans le $2^{\acute{e}me}$ un volume $V_2 = 25mL$ d'une solution acidifiée (S_2) d'eau oxygéné de concentration molaire C_2 .

À la date t=0s, on mélange, en agitant, les contenus des deux béchers, la réaction totale qui se produit est modélisée par l'équation : $\mathbf{H_2O_2} + 2\mathbf{I}^- + 2\mathbf{H_3O}^+ \longrightarrow \mathbf{I_2} + 4\mathbf{H_2O}$

Pour étudier la cinétique de cette réaction on réalise des prélèvements identiques de volume $V_P=5mL$ chacun et on dose la quantité de diiode formé par une solution de thiosulfate de sodium $Na_2S_2O_3$ de concentration molaire $C=0,5mol_LL^{-1}$.

L'équation de la réaction de dosage rapide et totale est : $I_2 + 2S_2O_3^2 \longrightarrow 2I^2 + S_4O_6^2$

Les résultats du dosage ont permis de tracer la courbe traduisant la variation de $n(H_2O_2)$ au cours du temps figure 1 de la page annexe.

1°)

- a- Donner la définition d'une réaction totale.
- b- Quel autre caractère de la réaction étudiée peut on dégager a partir de la courbe.

2°)

- a- Dresser le tableau d'avancement de la réaction étudiée en utilisant les quantités de matière initiales $n_0(\Gamma)$ et $n_0(H_2O_2)$ dans chaque prélèvement.
- **b-** Déterminer l'avancement final x_f et déduire $n_0(\Gamma)$.
- 3°) Déterminer la concentration molaire de l'eau oxygénée et celle des ions iodure dans le mélange à la date t=0s. Déduire les valeurs des concentrations molaires C_1 et C_2 .

4°)

- a- Définir le temps de demi-réaction $t_{1/2}$. Déterminer sa valeur.
- **b-** Déterminer le volume V de la solution de thiosulfate de sodium ajouté pour atteindre l'équivalence à l'instant de date $t_{1/2}$.
- c- Si on réalise l'expérience en présence de quelques gouttes d'une solution contenant des ions Fe^{2+} , préciser, en justifiant, si ces affirmations sont vrais ou fausses
 - le temps de demi-réaction ne varie pas.
 - le volume V est supérieur à celui trouvé en b-).
- 5°) Tracer, en réalisant les calculs nécessaires, l'allure de la courbe d'évolution de $n(H_2O_2)$ en fonction du temps si on ajoute une masse m=3,32g d'iodure de potassium KI au mélange initial sans changement de volume. On donne : masse molaire moléculaire $M_{KI}=166$ g.mol⁻¹

Exercice N°2:

L'eau de javel est une solution équimolaire d'hydrochlorate de sodium (Na⁺, ClO⁻) et de chlorure de sodium. À la maison, elle est surtout utilisée comme antiseptique ou comme décolorant dans le blanchissage. Elle doit être conservée dans un emballage opaque à l'abri de la chaleur pour éviter l'accélération de sa décomposition.

On se propose d'étudier la cinétique de la réaction de décomposition d'une eau de Javel catalysée par des ions cobalt Co^{2+} . L'équation de cette réaction supposée totale est : $2C\ell O^- \longrightarrow 2C\ell^- + O_2$

A une date $\mathbf{t} = \mathbf{0} \mathbf{s}$, on dispose d'une eau de Javel catalysée par des ions Co^{2+} , de volume

 $V_1 = 100 \text{ cm}^3$, de concentration initiale en ions hypochlorite [$\mathcal{C}\ell\mathcal{O}^-$]₀ inconnue.

Afin de suivre l'évolution de la réaction, on mesure à température et pression constantes, le volume V_{02}

de dioxygène dégagé au cours du temps, en **cm**³, dans des conditions où le volume molaire est **Vm** = **22.4 L mol**⁻¹. On obtient le tableau de mesure suivant :

t(s)	0	60	120	180	240	300	360	390	420	450	∞
$V_{O_2}(cm^3)$	0	74	38	189	231	255	278	286	291	295	295

1°)

- a- Dresser le tableau descriptif d'évolution de la réaction
- **b-** Montrer que la concentration molaire à t=0s des ions chlorate est $\left[C\ell O^{-} \right]_{0}=0,26 mol.L^{-1}$
- c- Etablir la relation qui permet de calculer la concentration des ions chlorate [CℓO⁻] en fonction de

$$\left[\text{ClO}^{\text{-}} \right]_{0}, \, V_{O_{2}} \,$$
 , V_{1} et $V_{m}.$

- 2°) Par déduction des résultats précédents on trace la courbe de variation de la concentration des ions chlorate [ClO] en fonction du temps figure 2 de la page annexe
 - a- Définir la vitesse volumique $v_{\rm v}$ de la réaction.
 - **b-** Montrer que cette vitesse peut être exprimée par la relation suivante $v_v = -\frac{1}{2} \frac{d[C\ell O^*]}{dt}$
 - c- Calculer sa valeur à l'instant t=0s
- **d-** Sur le graphe de la **figure 2** de la page annexe, à rendre avec la copie, tracer l'allure de la courbe représentant l'évolution de $CUO^- = f(t)$ en l'absence d'ions cobalt. Justifier la réponse.
- 3°) Dans les conditions de l'expérience la concentration $\left[C\ell O^{-}\right]$ évolue conformément à la relation $\left[C\ell O^{-}\right] = \left[C\ell O^{-}\right]_{0} e^{-\alpha t}$ α est une constante.
 - a- Etablir la loi de variation de la vitesse volumique $\mathcal{U}_{\mathbf{v}}$.
 - **b-** Déduire la valeur de la constante α.
 - **c-** Déduire une relation simple entre la vitesse v(t) et la concentration $\begin{bmatrix} C\ell O^- \end{bmatrix}$ et calculer à l'instant de date t=130s

PHYSIQUE (11 Points)

Exercice N°1 (8 Points)

On dispose au laboratoire

- D'un condensateur plan de capacité C inconnue
- De trois conducteurs ohmiques de résistances R_1 et R_2 inconnues et $R=5K\Omega$.
- D'un commutateur K
- D'un générateur de courant qui débite un courant d'intensité constante I =0,632 mA.
- D'un générateur de tension de fem **E=10 V**.
- deux diodes à jonction.
- lacktriangle Des groupes d'élèves réalisent des expériences pour déterminer les valeurs de la capacité C et de R_1 et R_2

A- Expérience N°1:

Un 1^{er} premier groupe réalise le circuit électrique de **la figure (3)**

À un instant t, ils ferment l'interrupteur K. un système d'acquisition permet de suivre l'évolution au cours du temps de l'énergie emmagasinée par le condensateur. On obtient la courbe de la **figure (4)**

 1°) Préciser, en justifiant le phénomène qui se produit au niveau du condensateur

2°)

a- Exprimer l'énergie électrique emmagasinée par le condensateur \mathbf{E}_{C} en fonction de \mathbf{I} , \mathbf{C} et \mathbf{t} .

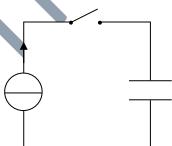


Figure 3

b- En exploitant la courbe de la figure (4), déterminer la valeur de la capacité C du condensateur.

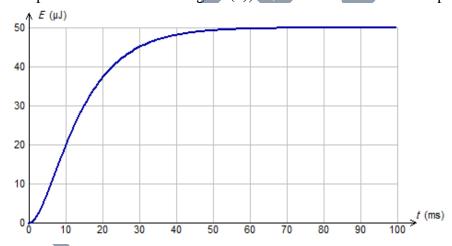


Figure 4

B- Expérience N°2:

Le 2^{eme} groupe réaliser le circuit représenté sur la figure 5 de la page annexe

- I- ils ferment le commutateur K sur la position 1, à la t=0s pris comme l'origine de temps. 1°)
 - a- Etablir l'équation différentielle régissant la variation de la tension u_C aux bornes du condensateur.
- **b-** Montrer que $\mathbf{u}_C = \mathbf{A}(\mathbf{1} \mathbf{e}^{\alpha t})$ est une solution de l'équation différentielle pour des expressions de A et de α que l'on précisera.
 - **c-** Déduire l'expression de la constante de temps τ .

2°)

- a- Montrer que l'expression de la tension aux bornes du résistor s'écrit : $\mathbf{u}_{\mathbf{R}}(\mathbf{t}) = \frac{\mathbf{RE}}{\mathbf{R} + \mathbf{R}_{2}} e^{-\frac{\mathbf{t}}{\tau}}$
- b- Un logiciel permet de tracer $Ln(u_R)$ en fonction du temps. on obtient la courbe de la figure 5
 - Justifier l'allure de la courbe de la figure 6.
 - Déterminer à partir de la courbe de la figure 6 la valeur de la résistance R2 et celle de la capacité C.
- II- Lorsque le condensateur est complètement chargé, à un instant pris comme origine de temps, ils basculent le commutateur K à la position 2.
- 1°) L'équation différentielle régissant les variations de tension $\mathbf{u}_{\mathbf{R}}$ s'écrit : $\frac{d\mathbf{u}_{\mathbf{R}}}{dt} + \frac{1}{(\mathbf{R} + \mathbf{R}_{1})\mathbf{C}} \cdot \mathbf{u}_{\mathbf{R}} = 0$

Vérifier que la solution de l'équation différentielle est $\mathbf{u}_{\mathbf{R}}(t) = \frac{\mathbf{RE}}{\mathbf{R} + \mathbf{R}_{1}} e^{-\frac{t}{(\mathbf{R}_{1} + \mathbf{R})\mathbf{C}}}$

2°) À l'aide d'un oscilloscope à mémoire branché convenablement au circuit, les élèves visualisent la tension aux bornes du résistor de résistance **R** représenté, sur la **figure 7**.

En exploitant la courbe de la **figure 7** montrer que $R_1 = \frac{2R}{3}$

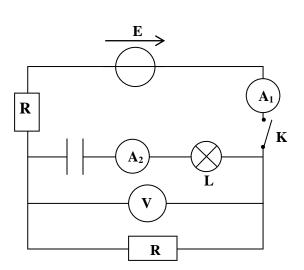
 3°) Déterminer l'énergie dissipée par effet joule dans le résistor R entre les instant de dates t=0s et $t_1=6,5\tau$

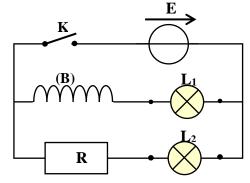
Exercice N°2: (3 Points)

I- Pour étudier l'influence d'un condensateur dans un circuit

On réalise la montage de la figure ci-contre formé par :

- Un générateur idéal de **fem E**
- Un condensateur de capacité C.
- Deux résistors de même résistance R.
- Une lampe L.
- Un interrupteur K.
- Un voltmètre
- Deux ampèremètre A_1 et A_2 identiques.

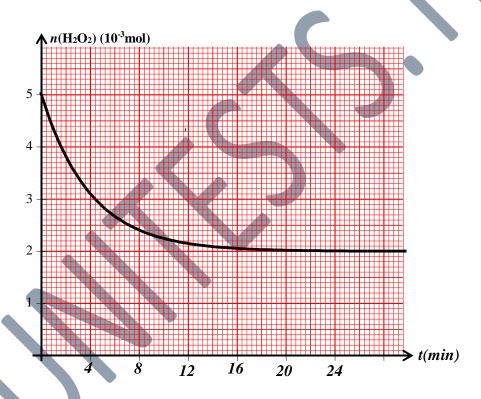

On ferme K à la date $\mathbf{t} = \mathbf{0}$ on distingue que la lampe L s'allume puis elle s'éteint au bout de quelques fractions de seconde.


- * L'ampèremètre A_1 indique un courant non nul.
- * L'ampèremètre A₂ indique un courant nul.
- * Le voltmètre indique une tension 6V.
- 1°) Expliquer et interpréter les phénomènes observes.
- 2°) Déterminer la fem du générateur.
- II- Pour étudier l'influence d'une bobine dans un circuit électrique.

On réalise le montage de la figure ci-contre formé par

- Une bobine (B) d'inductance L et de résistance **R**.
- Deux lampes L_1 et L_2 identiques
- Un résistor de résistance R

On ferme l'interrupteur K. On constante que L_2 s'allume immédiatement et L_1 s'allume après un retard de temps.



- a- Qu'appelle t- on le phénomène responsable du retard.
- b- Expliquer ce phénomène en précisant le sens du courant induit.
- 2°) Expliquer pourquoi. en régime permanent les 2 lampes s'allument normalement avec le même éclat.
- III- On réalise les 2 expériences représenter sur la figure 8 de l'annexe.
- 1°) Qu'appelle-t-on le phénomène responsable à la déviation de l'aiguille du milli Ampèremètre.
- 2°) Indiquer en le justifiant pour chacune de ces expériences.
 - a- L'inducteur et l'induit.
 - **b-** Le sens du courant induit.

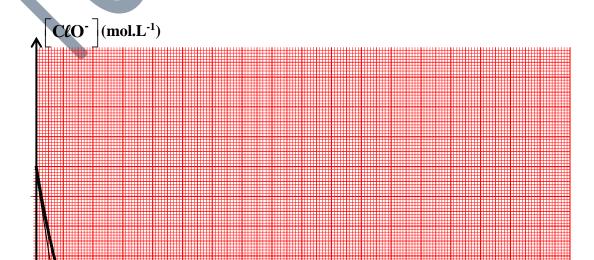
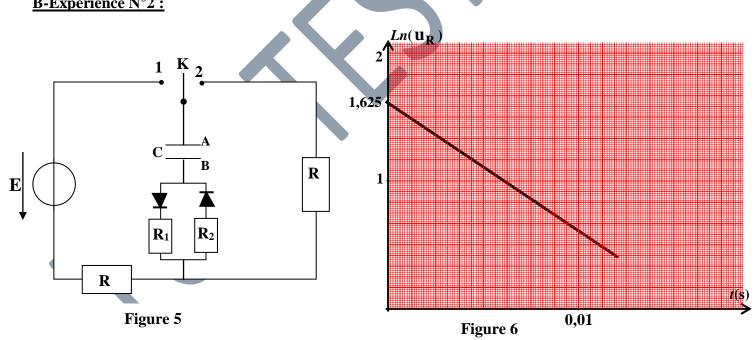
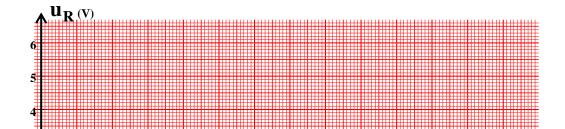
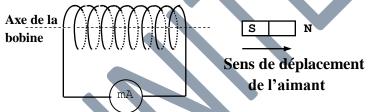

Annexe à rendre avec la copie

Figure 1


Exercice N°2



PHYSIQUE


Exercice N°1

B-Expérience N°2 :

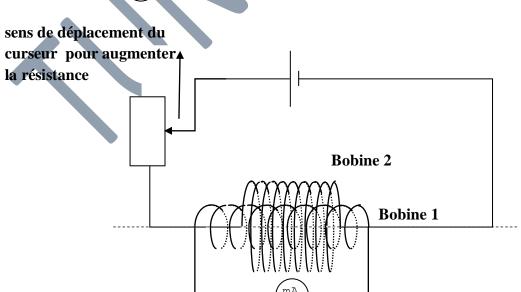


Figure 8

